进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数
据,并命名与之相关的技术发展与创新。它已经上过《纽约时报》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的国金证券、国泰君安、银河证券等写进了投资推荐报告。
数据正在迅速膨胀并变大,它决定着企业的未来发展,虽然很多企业可能并没有意识到数据爆炸性增长带来问题的隐患,但是随着时间的推移,人们将越来越多的意识到数据对企业的重要性。
正如《纽约时报》2012年2月的一篇专栏中所称,“大数据”时代已经降临,在商业、经济及其他领域中,决策将日益基于数据和分析而作出,而并非基于经验和直觉。
哈佛大学社会学教授加里·金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。着云台的分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。
“大数据”在互联网行业指的是这样一种现象:互联网公司在日常运营中生成、累积的用户网络行为数据。这些数据的规模是如此庞大,以至于不能用G或T来衡量。
大数据到底有多大?一组名为“互联网上一天”的数据告诉我们,一天之中,互联网产生的全部内容可以刻满1.68亿张DVD;发出的邮件有2940亿封之多(相当于美国两年的纸质信件数量);发出的社区帖子达200万个(相当于《时代》杂志770年的文字量);卖出的手机为37.8万台,高于全球每天出生的婴儿数量37.1万……
截止到2012年,数据量已经从TB(1024GB=1TB)级别跃升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别。国际数据公司(IDC)的研究结果表明,2008年全球产生的数据量为0.49ZB,2009年的数据量为0.8ZB,2010年增长为1.2ZB,2011年的数量更是高达1.82ZB,相当于全球每人产生200GB以上的数据。而到2012年为止,人类生产的所有印刷材料的数据量是200PB,全人类历史上说过的所有话的数据量大约是5EB。IBM的研究称,整个人类文明所获得的全部数据中,有90%是过去两年内产生的。而到了2020年,全世界所产生的数据规模将达到今天的44倍。
每一天,全世界会上传超过5亿张图片,每分钟就有20小时时长的视频被分享。然而,即使是人们每天创造的全部信息——包括语音通话、电子邮件和信息在内的各种通信,以及上传的全部图片、视频与音乐,其信息量也无法匹及每一天所创造出的关于人们自身的数字信息量。
这样的趋势会持续下去。我们现在还处于所谓“物联网”的最初级阶段,而随着技术成熟,我们的设备、交通工具和迅速发展的“可穿戴”科技将能互相连接与沟通。科技的进步已经使创造、捕捉和管理信息的成本降至2005年的六分之一,而从2005年起,用在硬件、软件、人才及服务之上的商业投资也增长了整整50%,达到了4000亿美元。
一分钟内,微博推特上新发的数据量超过10万;社交网络“脸谱”的浏览量超过600万……
这些庞大数字,意味着什么?
它意味着,一种全新的致富手段也许就摆在面前,它的价值堪比石油和黄金。
事实上,当你仍然在把微博等社交平台当作抒情或者发议论的工具时,华尔街的敛财高手们却正在挖掘这些互联网的“数据财富”,先人一步用其预判市场走势,而且取得了不俗的收益。
让我们一起来看看——他们是怎么做的。
这些数据都能干啥。具体有六大价值:
●1、华尔街根据民众情绪抛售股票;
●2、对冲基金依据购物网站的顾客评论,分析企业产品销售状况;
●3、银行根据求职网站的岗位数量,推断就业率;
●4、投资机构搜集并分析上市企业声明,从中寻找破产的蛛丝马迹;
●5、美国疾病控制和预防中心依据网民搜索,分析全球范围内流感等病疫的传播状况;
●6、美国总统奥巴马的竞选团队依据选民的微博,实时分析选民对总统竞选人的喜好。
“数据是新的石油。”亚马逊前任首席科学家Andreas Weigend说。Instagram以10亿美元出售之时,成立于1881年的世界*影像产品及服务商柯达正申请破产。
大数据是如此重要,以至于其获取、储存、搜索、共享、分析,乃至可视化地呈现,都成为了当前重要的研究课题
。
“当时时变幻的、海量的数据出现在眼前,是怎样一幅壮观的景象?在后台注视着这一切,会不会有接近上帝俯视人间星火的感觉?”
这个问题我曾请教过刘建国,*著名的搜索引擎专家。刘曾主持开发过国内*大规模中英文搜索引擎系统“天网”。
要知道,刘建国曾任至百度的首席技术官,在这样一家每天需应对网民各种搜索请求1.7亿次(2013年约为8.77亿次)的网站中,如果只是在后台静静端坐,可能片刻都不能安心吧。百度果然在提供搜索服务之外,逐渐增添了百度指数,后又建立了基于网民搜索数据的重要产品“贴吧”及百度统计产品等。
刘建国没有直接回答这个问题,他想了很久,似乎陷入了回忆,嘴角的笑容含着诡秘。
倒是有公司已经在大数据中有接近上帝俯视的感觉,美国洛杉矶就有企业宣称,他们将全球夜景的历史数据建立模型,在过滤掉波动之后,做出了投资房地产和消费的研究报告。
在数据可视化呈现方面,我*接收到的故事是,一位在美国思科物流部门工作的朋友,很聪明的印度裔小伙子,被Facebook高价挖角,进入其数据研究小组。他后来惊讶地发现,里面全是来自物流企业、供应链方面的技术人员和专家,“Facebook想知道,能不能用物流的角度和流程的方式,分析用户的路径和行为。”
数据量大(Volume)
*特征是数据量大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。
类型繁多(Variety)
第二个特征是数据类型繁多。包括网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。
价值密度低(Value)
第三个特征是数据价值密度相对较低。如随着物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何通过强大的机器算法更迅速地完成数据的价值“提纯”,是大数据时代亟待解决的难题。
速度快时效高(Velocity)
第四个特征是处理速度快,时效性要求高。这是大数据区分于传统数据挖掘最显着的特征。
既有的技术架构和路线,已经无法高效处理如此海量的数据,而对于相关组织来说,如果投入巨大采集的信息无法通过及时处理反馈有效信息,那将是得不偿失的。可以说,大数据时代对人类的数据驾驭能力提出了新的挑战,也为人们获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。
个案一
你开心他就买你焦虑他就抛
华尔街“德温特资本市场”公司首席执行官保罗·霍廷每天的工作之一,就是利用电脑程序分析全球3.4亿微博账户的留言,进而判断民众情绪,再以“1”到“50”进行打分。根据打分结果,霍廷再决定如何处理手中数以百万美元计的股票。
霍廷的判断原则很简单:如果所有人似乎都高兴,那就买入;如果大家的焦虑情绪上升,那就抛售。
这一招收效显着——当年*季度,霍廷的公司获得了7%的收益率。
个案二
国际商用机器公司(IBM)估测,这些“数据”值钱的地方主要在于时效。对于片刻便能定输赢的华尔街,这一时效至关重要。曾经,华尔街2%的企业搜集微博等平台的“非正式”数据;如今,接近半数企业采用了这种手段。
●“社会流动”创业公司在“大数据”行业生机勃勃,和微博推特是合作伙伴。它分析数据,告诉广告商什么是正确的时间,谁是正确的用户,什么是应该发表的正确内容,备受广告商热爱。
●通过乔希·詹姆斯的Omniture(著名的网页流量分析工具)公司,你可以知道有多少人访问你的网站,以及他们呆了多长时间——这些数据对于任何企业来说都至关重要。詹姆斯把公司卖掉,进账18亿美元。
●微软专家吉拉德喜欢把这些“大数据”结果可视化:他把客户请到办公室,将包含这些公司的数据图谱展现出来——有些是普通的时间轴,有些像蒲公英,有些则是铺满整个画面的泡泡,泡泡中显示这些客户的粉丝正在谈论什么话题。
●“脸谱”数据分析师杰弗逊的工作就是搭建数据分析模型,弄清楚用户点击广告的动机和方式。
处理和分析工具
用于分析大数据的工具主要有开源与商用两个生态圈。
开源大数据生态圈:
1、Hadoop HDFS、HadoopMapReduce, HBase、Hive 渐次诞生,早期Hadoop生态圈逐步形成。
2、. Hypertable是另类。它存在于Hadoop生态圈之外,但也曾经有一些用户。
3、NoSQL,membase、MongoDb
商用大数据生态圈:
1、一体机数据库/数据仓库:IBM PureData(Netezza), OracleExadata, SAP Hana等等。
2、数据仓库:TeradataAsterData, EMC GreenPlum, HPVertica 等等。
3、数据集市:QlikView、 Tableau 、 以及国内的Yonghong Data Mart 。
大数据是信息通信技术发展积累至今,按照自身技术发展逻辑,从提高生产效率向更高级智能阶段的自然生长。无处不在的信息感知和采集终端为我们采集了海量的数据,而以云计算为代表的计算技术的不断进步,为我们提供了强大的计算能力,这就围绕个人以及组织的行为构建起了一个与物质世界相平行的数字世界
。
大数据虽然孕育于信息通信技术的日渐普遍和成熟,但它对社会经济生活产生的影响绝不限于技术层面,更本质上,它是为我们看待世界提供了一种全新的方法,即决策行为将日益基于数据分析做出,而不是像过去更多凭借经验和直觉做出。
事实上,大数据的影响并不仅仅限于信息通信产业,而是正在“吞噬”和重构很多传统行业,广泛运用数据分析手段管理和优化运营的公司其实质都是一个数据公司。麦当劳、肯德基以及苹果公司等旗舰专卖店的位置都是建立在数据分析基础之上的精准选址。而在零售业中,数据分析的技术与手段更是得到广泛的应用,传统企业如沃尔玛通过数据挖掘重塑并优化供应链,新崛起的电商如*亚马逊、淘宝等则通过对海量数据的掌握和分析,为用户提供更加专业化和个性化的服务。
最让人吃惊的例子是,社交媒体监测平台DataSift监测了Facebook(脸谱) IPO当天Twitter上的情感倾向与Facebook股价波动的关联。在Facebook开盘前Twitter上的情感逐渐转向负面,25分钟之后Facebook的股价便开始下跌。而当Twitter上的情感转向正面时,Facebook股价在8分钟之后也开始了回弹。最终当股市接近收盘、Twitter上的情感转向负面时,10分钟后Facebook的股价又开始下跌。最终的结论是:Twitter上每一次情感倾向的转向都会影响Facebook股价的波动。
这仅仅只是基于社交网络产生的大数据“预见未来”的众多案例之一,此外还有谷歌通过网民搜索行为预测流感爆发等例子。不仅在商业方面,大数据在社会建设方面的作为同样令人惊叹,智能电网、智慧交通、智慧医疗、智慧环保、智慧城市等的蓬勃兴起,都与大数据技术与应用的发展息息相关。
“大数据”可能带来的巨大价值正渐渐被人们认可,它通过技术的创新与发展,以及数据的全面感知、收集、分析、共享,为人们提供了一种全新的看待世界的方法。更多地基于事实与数据做出决策,这样的思维方式,可以预见,将推动一些习惯于靠“差不多”运行的社会发生巨大变革。
一个好的企业应该未雨绸缪,从现在开始就应该着手准备,为企业的后期的数据收集和分析做好准备,企业可以从下面六个方面着手,这样当面临铺天盖地的大数据的时候,以确保企业能够快速发展,具体为下面六点。
几乎每个组织都可能有源源不断的数据需要收集,无论是社交网络还是车间传感器设备,而且每个组织都有大量的数据需要处理,IT人员需要了解自己企业运营过程中都产生了什么数据,以自己的数据为基准,确定数据的范围。
虽然每个企业都会产生大量数据,而且互不相同、多种多样的,这就需要企业IT人员在现在开始收集确认什么数据是企业业务需要的,找到最能反映企业业务情况的数据。
大数据需要在服务器和存储设施中进行收集,并且大多数的企业信息管理体系结构将会发生重要大变化,IT经理则需要准备扩大他们的系统,以解决数据的不断扩大,IT经理要了解公司现有IT设施的情况,以组建处理大数据的设施为导向,避免一些不必要的设备的购买。
大数据是最近几年才兴起的词语,而并不是所有的IT人员对大数据都非常了解,例如如今的Hadoop,MapReduce,NoSQL等技术都是2013年刚兴起的技术,企业IT人员要多关注这方面的技术和工具,以确保将来能够面对大数据的时候做出正确的决定。
大多数企业最缺乏的是人才,而当大数据到临的时候,企业将会缺少这方面的采集收集分析方面的人才,对于一些公司,特别是那种人比较少的公司,工作人员面临大数据将是一种挑战,企业要在平时的时候多对员工进行这方面的培训,以确保在大数据到来时,员工也能适应相关的工作。
Teradata大中华区首席执行官辛儿伦对新浪科技表示,随着大数据时代的到来,企业应该在内部培养三种能力。*,整合企业数据的能力;第二,探索数据背后价值和制定*行动纲领的能力;第三,进行*快速实时行动的能力。
做到上面的几点,当大数据时代来临的时候,面临大量数据将不是束手无策,而是成竹在胸,而从数据中得到的好处也将促进企业快速发展。
【基本信息】
分类:网络趋势/大数据时代
书名:大数据时代(BigData:ARevolutionThatWillTransformHowWeLive,Work,andThink)
作者:[英]维克托·迈尔-舍恩伯格(ViktorMayer-Sch?nberger)着
盛扬燕周涛译
定价:49.90元
开本:16K
页数:240
出版时间:2012年12月
责编:金纪王方玲
出版社:浙江人民出版社
图书品牌:湛庐文化
【内容简介】
《大数据时代》是国外大数据研究的先河之作,本书作者维克托·迈尔·舍恩伯格被誉为“大数据商业应用*人”,拥有在哈佛大学、牛津大学、耶鲁大学和新加坡国立大学等多个互联网研究重镇任教的经历,早在2010年就在《经济学人》上发布了长达14页对大数据应用的前瞻性研究。
维克托·迈尔·舍恩伯格在书中前瞻性地指出,大数据带来的信息风暴正在变革我们的生活、工作和思维,大数据开启了一次重大的时代转型,并用三个部分讲述了大数据时代的思维变革、商业变革和管理变革。
维克托*洞见之处在于,他明确指出,大数据时代*转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。这就颠复了千百年来人类的思维惯例,对人类的认知和与世界交流的方式提出了全新的挑战。
本书认为大数据的核心就是预测。大数据将为人类的生活创造前所未有的可量化的维度。大数据已经成为了新发明和新服务的源泉,而更多的改变正蓄势待发。书中展示了谷歌、微软、亚马逊、IBM、苹果、facebook、twitter、VISA等大数据先锋们*价值的应用案例。
【作者简介】
维克托·迈尔·舍恩伯格(ViktorMayer-Sch?nberger)
他是十余年潜心研究数据科学的技术权威,他是最早洞见大数据时代发展趋势的数据科学家之一,也是最受人尊敬的权威发言人之一。他曾先后任教于世界最著名的几大互联网研究学府。现任牛津大学网络学院互联网治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人,哈佛国家电子商务研究中网络监管项目负责人;曾任新加坡国立大学李光耀学院信息与创新策略研究中心主任。并担任耶鲁大学、芝加哥大学、弗吉尼亚大学、圣地亚哥大学、维也纳大学的客座教授。
他的学术成果斐然,有一百多篇论文公开发表在《科学》《自然》等著名学术期刊上,他同时也是哈佛大学出版社、麻省理工出版社、通信政策期刊、美国社会学期刊等多家出版机构的特约评论员。
他是备受众多世界知名企业信赖的信息权威与顾问。他的咨询客户包括微软、惠普和IBM等全球*企业;而他自己早在1986年与1995年就担任两家软件公司的总裁兼CEO,由他的公司开发的病毒通用程序,成为当时奥地利最畅销的软件产品。1991年跻身奥地利软件企业家前5名之列,2000年被评为奥地利萨尔斯堡州的年度人物。
他也是众多机构和国家政府高层的信息政策智囊。他一直专注于信息安全与信息政策与战略的研究,是欧盟专家之一,也是世界经济论坛、马歇尔计划基金会等重要机构的咨询顾问,同时他以大数据的全球视野,熟悉亚洲信息产业的发展与战略布局,先后担任新加坡商务部高层、文莱国防部高层、科威特商务部高层、迪拜及中东政府高层的咨询顾问。
所着《大数据》一书是开国外大数据系统研究的先河之作,而在这之前,他已经在《经济学人》上和数据编辑肯尼斯.尼尔-库克耶一起,发表了长达14页的大数据专题文章,成为最早洞见大数据时代趋势的数据科学家之一。而他的《删除》一书,同样被认为是关于数据的开创性作品,并且创造了“被遗忘的权利”的概念而在媒体圈和法律圈得到广泛运用。该书获得美国政治科学协会颁发的唐·K·普赖斯奖,以及媒介环境学会颁发的马歇尔·麦克卢汉奖。同时受到《连线》、《自然》《华尔街日报》《纽约时报》等各大权威媒体广泛好评。
【目录】
引言正在发生的生活、工作与思维的大变革
*部分大数据时代的思维变革
第1章更多:不是随机样本,而是所有数据
第2章更杂:不是*性,而是混杂性
第3章更好:不是因果关系,而是相关关系
第二部分大数据时代的商业变革
第4章数据化:一切皆可“量化”
第5章价值:“取之不尽,用之不竭”的数据创新
第6章角色定位:数据、技术与思维的三足鼎立
第三部分大数据时代的管理变革
第7章风险:让数据主宰一切的隐忧
第8章掌控:自由与责任并举的数据管理
结语已经发生的未来
【基本信息】
分类:网络趋势/大数据时代
书名:删除(Delete:TheVirtueofForgettingintheDigitalAge)
作者:[英]维克托·迈尔-舍恩伯格(ViktorMayer-Sch?nberger)着
袁杰译
定价:49.90元
开本:16K
页数:240
出版时间:2013年1月
责编:黄昕
出版社:浙江人民出版社
图书品牌:湛庐文化
ISBN:978-7-213-05251-4
【内容简介】
《删除》讲述了遗忘的美德,为读者展现了大数据时代的取舍之道。
《删除》从大数据时代信息取舍的目的和方法分别诠释了“被遗忘的权利”。维克托首先回溯了人类追寻记忆的过程,之后提出数字技术与全球网络正在瓦解我们天生的遗忘能力。对此,他考察了促进遗忘终止4大驱动力——数字化,廉价的存储器,易于提取,全球性访问。之后,他提出了当前数字化记忆的两大威胁——信息权力与时间,并给出了应对威胁的6大对策——数字化节制、保护信息隐私权、建设数字隐私权基础设施、调整人类的现有认知、打造良性的信息生态、完全语境化。较后,他提出了一种应对数字化记忆与信息安全的极有可能的关键对策——给信息设定存储期限。
《删除》开启了一场“互联网遗忘运动”,让我们始终记得遗忘的美德。这本书告诉我们,在大数据时代,面对海量信息人类该如何取舍,怎样才能构建一个积极而安全的未来。
《删除》讲述了遗忘的美德,为读者展现了大数据时代的取舍之道。数字技术赋予了我们前所未有的权利,它也产生了意想不到的可怕后果。facebook上照片会被网络永远铭记,甚至会影响到一个人的职业发展;Google记得所有我们搜索过的信息和时间。数字王国记住了那些有时*被遗忘的信息。
删除,大数据取舍之道,就是把有意义的留下来,把无意义的去掉。只有理解了在大数据中,需要的是什么,以及如何判断这种需要,才能举一反三地明白到底为什么要去掉那些不需要的。
*社科院信息化研究中心秘书长姜奇平作序倾情推荐。北京大学新闻与传播学院副教授胡泳、*科学院理论物理研究所研究员李淼、麻省理工学院教授大卫·克拉克、国际著名信息隐私权专家保罗·施瓦茨、斯坦福大学互联网与社会中心创办人劳伦斯·莱斯格、波士顿咨询公司高级副总裁菲利普·埃文斯联袂推荐。
《删除》一经出版,即获得美国政治科学协会颁发的“唐·普赖斯奖”,以及媒介环境学会的*荣誉“马歇尔·麦克卢汉奖”,同时受到《连线》《自然》《华尔街日报》《纽约时报》等各大权威媒体广泛好评。
《删除》洞见了“被遗忘的权利”,探索了大数据时代人类该如何构建积极而安全的未来。
【目录】
中文版序大数据取舍之道
推荐序因意义而智慧姜奇平
*部分大数据时代为什么要进行信息的取舍
第1章当遗忘变成例外,而记忆成了常态:大数据时代的隐忧
对于人类而言,遗忘一直是常态,而记忆才是例外。然而,由于数字技术与全球网络的发展,这种平衡已经被打破了。如今,过去正像刺青一样被刻在我们的数字皮肤上,遗忘已经变成了例外,而记忆却成了常态……
喝醉的海盗
一个没有遗忘的时代
抹不掉的致幻剂阴影
Google记得你的一切
大数据的信息力量
人类住进了数字圆形监狱
让我们学会遗忘
第2章遗忘,人类的天性:人类记忆的作用与演进
遗忘,是人类的天性。从古至今,人们不断尝试用本能、语言、绘画、文本、媒体、介质,来记住我们的知识。千年以来,遗忘始终比记忆更简单,成本也更低。数字时代颠复了这一切,而我们却惊愕地发现,如果真的记住一切,不仅令人发狂,而且让人孤独绝望……
人类的本能记忆
语言记忆
外部记忆:绘画与文本
共享记忆
介质记忆:摄影、磁带与胶片
第二部分大数据时代如何进行信息的取舍
第3章世界已经被设置成记忆模式:数字化记忆发展的4大驱动力
人类对完整记忆的需求一直在持续上升,这让如今的世界已经被设置为记忆模式。海量的数字化记忆不仅触手可得,甚至比选择性删除所耗费的时间成本更低。这是一个几乎失去了遗忘动机的时代……
小黑盒子与麦克斯存储扩展器
驱动力1:数字化
驱动力2:廉价的存储器
驱动力3:易于提取
驱动力4:全球性复盖
第4章一个没有安全与时间的未来:数字化记忆的两大威胁
在信息权力与时间的交汇处,永久的记忆创造了空间和时间圆形监狱的幽灵。广泛的数字记忆摧毁了历史,损害了我们的判断和我们及时行为的能力,让我们无助地徘徊在两个同样让人不安的选择之间:是选择永久的过去,还是忽略现在……
信息富民VS信息贫民:信息控制权的威胁
永恒的过去VS被忽视的现在:时间的威胁
第5章来一场“互联网遗忘”运动:应对数字化记忆与信息安全的6大对策
数字化记忆仿佛是一个诅咒,人类对它愈发强烈的依赖阻碍了我们从中学习、成长和发展的能力。而信息隐私权的维护不仅应在当下,还应在未来。如果有一天隐私权被废除,信息处理者们坐在堆积如山的个人信息中对为所欲为,那么信息隐私权还有什么意义?
对策1:数字化节制
对策2:保护信息隐私权
对策3:建设数字隐私权基础设施
对策4:调整人类的现有认知
对策5:打造良性的信息生态
对策6:完全语境化
第6章给信息一个存储期限:应对数字化记忆与信息安全的关键对策
存储期限并不是强制性的遗忘,不是让我们被迫去选择,而是通过存储期限让我们能对信息的寿命做出应对。它将成为我们日常生活的一部分,让我们深刻意识到一个人类已经无意识地默认了上千年的道理:数量不等于质量,“好”信息不等于“滥”信息。
cookie的警告
信息的存储期限
设定关于信息寿命的元信息
9个月,不断缩短的存储期限
设定存储期限的技术措施
不是用技术删除,而是让遗忘复活
谁来掌控存储期限
我们需要“能衰退”的存储系统
第7章让遗忘回归常态:大数据时代数字化记忆的未来
数字化使得存储成本的垂直下降,简便的信息提取,以及全球性访问数字记忆成为可能。在人类历史上,这是*次我们能够使记住比遗忘更便宜更容易,也是*次逆转了遗忘由来已久的默认状态。
大数据时代由某风投公司投资组建,由资深专业团队独立运作,于2014年3月24日正式上线。
以做大数据行业*媒体为宗旨,围绕大数据这一核心概念,专注聚焦国内外行业资讯,精准剖析数据应用,深度调研行业趋势,全面关注大数据传播,及时分享活动专题,见证并助推大数据行业的发展。
业界资讯
不仅涵盖国内资讯和技术前沿,我们还以敏锐的嗅觉捕捉到了政策解读及国外资讯之于大数据行业的价值所在,将重点关注国家政策及国外*信息。
数据应用
实践是检验真理的*标准,实现大数据的产业化更离不开产品的研发及成功案例的部署。
行业研究
大数据时代行业研究更为重要,虽说样本能够代表整体,但样本也需是精准化的样本,受众群体、价格、产品性质、市场份额等的调研才更有价值。
大数据传播
品牌对人们的影响力越来越大,做品牌就是在传播渠道与内容营销之间玩转。您的产品品牌会在大数据时代下崭露头角吗?
活动专题
关注展会,关注论坛,策划专题,Online-offline、Offline-online之间相互转换。
多年寻觅真爱不获的大龄女青年胡斯雅决定通过科学的数据分析来脱离她的单身生活。找到一家专业的恋爱数据分析公司替她谋划,约会后遭遇挫折的她却没想到幸福原来就在不远处。